
DATE OF EXAM Solution
SUBJECT NAME - MIDTERM Exam - Semester ENTER I or II

1. Find the Lebesgue points of the function

f(x) =

{
0 x < 0
1 x ≥ 0.

Solution: By the definition if x is a Lebesgue point of f if and only if

lim
r→0

1

|Er|

∫
Er

f(y)dy = f(x)

for any family of sets {Er}r>0 such that Er ⊂ B(x, r) and |Er| denotes the measure of the set Er.

Let x > 0. Now we know that the sets B(x, r) lies inside (0,∞) whenever r < x. For any r < x,
we have

1

|Er|

∫
Er

f(y)dy =
1

|Er|

∫
Er

1 dy = 1 = f(x).

Using a similar idea we get that for x < 0 and for all r < −x we have

1

|Er|

∫
Er

f(y)dy =
1

|Er|

∫
Er

0 dy = 0 = f(x).

Now it is remaining to show that x = 0 is not a Lebesgue point. Consider the family En = B(0, 1
n )

for n ∈ N. Now we can see that

1

|En|

∫
En

f(y)dy =
1

|En|

(∫ 0

− 1
n

f(y)dy +

∫ 1
n

0

f(y)dy
)

=
1

(2/n)
(0 + 1/n) =

1

2
6= f(0).

�

2. Consider the set M = {
∑N
n=−N cje

ijx : c1, c2, ..., cN ∈ C} where N is a given positive integer. Is
this a closed subspace of L1(µ), (where µ is the normalized Lebesgue measure in [0, 2π])?. Justify.

Solution: M $ L1(µ) is not a closed subspace of L1(µ). To prove this, for any f ∈ L1(µ), we
will find a sequence of functions in M which converges to f . Let FN be the Fejer kernel given

by FN (x) =
∑N
j=−N

(
1 − |j|

N+1

)
eijx. Clearly FN belongs to M for all N ∈ N. It is easy to see

that FN (x) =
∑
n∈Z F̂N (n)einx and for any f ∈ L1(µ), f ∗ FN (x) =

∑
n∈Z F̂N (n)f̂(n)einx. It gives

that f ∗ FN also belongs to M . By a straight forward verification we can see that FN is also an
approximate identity in L1(µ) and f ∗ FN converges to f in L1(µ) as N →∞.

�

3. Prove that

x =
π

2
− 4

π

∞∑
n=1

cos(2n− 1)x

(2n− 1)2

1



for 0 ≤ x ≤ π.

Solution: Let f(x) = x with 0 ≤ x ≤ π. Let f1 and f2 be its odd and even periodic extensions
on [−π, π]. We know that f1(x) = x and f2(x) = |x|. The Fourier transform of f2 can be

calculated as π
2 −

4
π

∑∞
n=1

cos(2n−1)x
(2n−1)2 . Since f2(x) = x = f(x) on [0, π] and f ∈ C2([0, π]), we have

x = π
2 −

4
π

∑∞
n=1

cos(2n−1)x
(2n−1)2 . �

4. Let f ∈ L1(µ) and SN (x) =
∑N
n=−N f̂(n)einx. Show that limN→∞

SN (x)
N exists for every x and find

the limit.

Solution: By Riemann-Lebesgue lemma f̂(n)→ 0 as n→ ±∞ for f ∈ L1(µ). Now

∣∣∣SN (x)

N

∣∣∣ ≤ N∑
n=−N

∣∣∣ f̂(n)

N

∣∣∣.
Now we have the sequences {f̂(n)}n∈N and {f̂(−n)}n∈N∪{0} converges absolutely to 0 and its

average also converges to 0. It means that the sequence {SN (x)
2N+1 }N converges. Multiply and divide

by (2N + 1) to SN (x)
N gives that the limN→∞

SN (x)
N = 0.

�

5. If f ∈ L1(µ) (µ as in Problem 4) and if f is continuous at 0 show that
∑N
−N (1− |n|

N+1 )f̂(n)→ f(0)
as N →∞.

Solution: From the solution of 2 we can write

f ∗ FN (x) =

N∑
−N

(1− |n|
N + 1

)f̂(n)einx

and f ∗ FN converges to f in L1(µ). Now

f ∗ FN (x) =

∫ π

−π
f(x− y)FN (y)dy

=

∫ π

0

f(x− y)FN (y)dy +

∫ π

0

f(x+ y)FN (y)dy

Now see that the first integral converges to 1
2f(x−) and second integral converges to 1

2f(x+). So
if f is continuous at x then f ∗ FN (x) goes to f(x). Now it is easy to see with the case x = 0.

�

6. If
∑∞
n=1 |ancos(nx)+bnsin(nx)| <∞ for all x in a set of positive measure show that

∑∞
n=1 |an| <∞

and
∑∞
n=1 |bn| <∞.

Solution: Proceed as in Cantor-Lebesgue Theorem and use the fact that
∫
E
|cos(nx − θn)|dx ≥∫

E
cos2(nx− θn).
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